
International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

71

International Journal of Research in Science And Technology

A COMPARATIVE STUDY OF SCHEDULING

ALGORITHMS FOR WEB CRAWLING USING VB.NET

TECHNOLOGY

*Sushil Kumar, #Dr. Anuj Kumar

*Research Scholar, CMJ University, Shillong Meghalaya -793003, India

ABSTRACT

Under the present study, Web Crawler simulator has been designed than analyze the different web

crawling algorithm to evaluate their performance. Web crawler is a computer program or software. Web

crawler is an essential component of search engines, data mining and other Internet applications.

Scheduling Web pages to be downloaded is an important aspect of crawling. Previous research on Web

crawl focused on optimizing either crawl speed or quality of the Web pages downloaded. While both

metrics are important, scheduling using one of them alone is insufficient and can bias or hurt overall

crawl process. This paper is all about the comparative study of scheduling algorithm for Web Crawling

using VB.NET Technology.

INTRODUCTION

A web-crawler is a program/software or automated script which browses the World Wide Web in a

methodical, automated manner. The structure of the World Wide Web is a graphical structure; the

links given in a page can be used to open other web pages. Actually Internet is a directed graph,

webpage as node and hyperlink as edge, so the search operation could be abstracted as a process of

traversing directed graph. By following the linked structure of the Web, we can traverse a number

of new web-pages starting from a starting webpage. Web crawlers are the programs or software

that uses the graphical structure of the Web to move from page to page. Such programs are also

called wanderers, robots, spiders, and worms. Web crawlers are designed to retrieve Web pages

and add them or their representations to local repository/databases. Web crawlers are mainly used

to create a copy of all the visited pages for later processing by a search engine that will index the

downloaded pages that will help in fast searches. Web search engines work by storing information

about many web pages, which they retrieve from the WWW itself. These pages are retrieved by a

Web crawler (sometimes also known as a spider), which is an automated Web browser that follows

every link it sees. Web are programs that exploit the graph structure of the web to move from page

to page. It may be observed that `crawlers' itself doesn’t indicate speed of these programs, as they

can be considerably fast working programs.

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

72

International Journal of Research in Science And Technology

Web crawlers are software systems that use the text and links on web pages to create search

indexes of the pages, using the HTML links to follow or crawl the connections between pages.

SIMULATOR DESIGN

This section covers the high level design and detailed design of the Web Crawler. Next section

presents the high level design of the Web Crawler in which summarised algorithmic view of

proposed crawler is presented. And after high level section, next section describes the General

architecture of the Web Crawler Simulator, technology and programming language used, user

interface of simulator or crawler and performance metric concepts. The proposed crawler simulator

imitates the behaviour of various crawling scheduling algorithms. This section briefly describes the

overall working of simulator in an algorithmic notation. Algorithm describes below presents the

high level design of Web Crawler Simulator

Step 1. First of all accept the URL and use this URL as the Seed or Acquire URL of processed web

document from processing queue.

Step 2. Add it to the Frontier.

Step 3. Now pick the URL from the Frontier for Crawling.

Step 4. Use this URL and Fetch the web page corresponding to that URL and store this web

document.

Step 5. Parse this web document’s content and extract set of URL links.

Step 6. Add all the newly found URLs into the Frontier.

Step 7. Go to step 2 and repeat while the Frontier is not empty.

Step 8. Output desired statistics. Step 9. Exit.

Thus a crawler will recursively keep on adding newer URLs to the database repository of the

search engine. So we can see that the main function of a crawler is to add new links into the

frontier and to select a new URL from the frontier for further processing after each recursive step.

GENERAL ARCHITECTURE OF THE CRAWLING SIMULATOR

Below figure shows the flow of the crawler simulation architecture [Ard¨o A]. The simulator is

designed so that all the logic about any specific scheduling algorithm is encapsulated in a different

module that can be easily plugged into the system

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

73

International Journal of Research in Science And Technology

Figure 1

All crawling modules share the data structures needed for the interaction with the simulator. The

simulation tool maintains a list of unvisited URLs called the frontier. This is initialized with the

seed URLs specified at the configuration file. Besides the frontier, the simulator contains a queue.

It is filled by the scheduling algorithm with the first k URLs of the frontier, where k is the size of

the queue mentioned above, once the scheduling algorithm has been applied to the frontier. Each

crawling loop involves picking the next URL from the queue, fetching the page corresponding to

the URL from the local database that simulates the Web and determining whether the page is

relevant or not. If the page is not in the database, the simulation tool can fetch this page from the

real Web and store it into the local repository. If the page is relevant, the outgoing links of this

page are extracted and added to the frontier, as long as they are not already in it. The crawling

process stops once a certain end condition is fulfilled, usually when a certain number of pages have

been crawled or when the simulator is ready to crawl another page and the frontier is empty. If the

queue is empty, the scheduling algorithm is applied and fills the queue with the first k URLs of the

frontier, as long as the frontier contains k URLs. If the frontier doesn’t contain k URLs, the queue

is filled with all the URLs of the frontier.

CRAWLER USER INTERFACE

The foremost criterion for the evaluation of crawling algorithm is the number of relevant pages

visited that are produced by each crawling algorithm under same set of Seed URLs. Than simulator

has been designed to study the behaviour pattern of different crawling algorithms for the same set

of starting URLs.

Page rank, relevant pages visited and the order in which a set of pages is downloaded are

considered to evaluate the performance of crawling policy and crawler. During the

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

74

International Journal of Research in Science And Technology

implementation process, we have taken some assumptions in to account just for simplifying

algorithms implementation and results.

Figure shown below is the snapshot of the main user interface of the Web Crawler simulator,

which is designed in the VB.NET using ASP.NET Window Application project type, for crawling

a website or any web application using this crawler internet connection must required and as input

use URL in a format like: http://www.google.com or http://google.com and set location and name

of database for saving crawling results data in MS-Access database.

Figure 2

At each simulation step, the scheduler chooses the topmost Website from the queue of Web sites

and sends this site's information to a module that will simulate downloading pages from the

Website. For this Simulator uses the different crawling scheduling policies and save data collected

or downloaded in MS Access Database in a table with some data fields which are ID, URL and

Data.

CRAWLING RESULT

The best way to compare the result of different policies is to present them in form of table

depicting the result in the form of Rows and columns. Output of

first simulated algorithm, Breadth First algorithm is shown below as a snapshot.

http://www.google.com/
http://google.com/

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

75

International Journal of Research in Science And Technology

Figure 3

The simulator uses the breadth first algorithm and crawled the website for the URL

http://www.cdlu.edu.in . The working of any Breadth-First algorithm is very simple. It simply

works of first come first serve. Crawling start with URL http://www.cdlu.edu.in. After processing

this URL, its child link inserted into the Frontier. Again the next page is fetched from the Frontier

and is processed, its children inserted into Frontier and so on. This procedure continues until the

Frontier gets empty.

Breadth-First is used here as a baseline crawler; since it does not use any knowledge about the

topic, and its performance is considered to provide a lower bound for any of the more sophisticated

algorithms.

Second optimal algorithm is Best First; in this the preference of next page to be approached

depends upon the relevancy of that page. Best First traversing from the same URL as Breadth First

algorithm for http://www.cdlu.edu.in. Its relevancy is set highest (2 in this case). Now the

relevancy of seed children comes out to be 0.1 and 1.0 respectively. Along with respective

relevancies, seed children are inserted in frontier. Every time, the page with highest relevancy

value is picked from the Frontier. The parent relevance decides which page will be selected next.

The page with the highest parent relevance value is selected from the Frontier every time. Third

crawling algorithm is Breadth First with time constraints and crawled result using this algorithm

for the same seed URL. It is analysed from the produced results that each policy behaves

differently with same seed URL.

RESULT FORMAT

Downloaded data page by page after crawling from the website http://www.cdlu.edu.in and store

in the database table’s Data Column field using the format shown below:

http://www.cdlu.edu.in/
http://www.cdlu.edu.in/
http://www.cdlu.edu.in/
http://www.cdlu.edu.in/

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

76

International Journal of Research in Science And Technology

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Language" content="en-us" />

<meta http-equiv="X-UA-Compatible" content="IE=7" />

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252" />

<meta name="verify-v1" content="uNh2/LFAVip3xI8N/LIVD63/1YquyPWEyzegOUv80Ls="

/>

<title>Welcome to CDLU, Sirsa</title>

<meta name="keywords" content="Chaudhary Devi Lal University, CDLU, University in Sirsa,

Distance education, Sirsa university, university in haryana, devi Lal university, CDLU Sirsa, Sirsa

university, Tau devi lal, choudhary Devi lal, university of haryana, MCA in sirsa, Mass

communication in sirsa, M.A. in Sirsa, M.Com in sirsa" />

…..

…..

…..

</body>

</html>

This format shows the crawled data for the home page of the website.

Graphical Representation

The simulation results on taking 100 pages visited are summarized in Table 1. Figure 4 shows that

the Breadth-First with time constraints retrieved 37.691 relevant Web pages (37,691% of all pages

visited) compared with 35.090 (35,090%) by PageRank, 33.930 (33,930%) by Best First and

28.797 (28,797%) by Breadth- First. Figure 5 shows the evolution of the precision rate for each

one of the scheduling algorithms. At the beginning, PageRank was the one that achieved the best

performance, but at the end the result was rather similar to Breadth First with time constraints.

Breadth First with time constraints had a more constant performance and at the end its result was

the best. Best First achieved the worst performance during almost all the execution, but at the end

it reached a precision rate rather close to Breadth First with time constraints and

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

77

International Journal of Research in Science And Technology

400

350

300

250

200

150

100

50

0

Breadth Best First PageRank Breadth

First First with

Time

Constraints

No of Pages Visited

No of Relevant Pages

Precision

PageRank. Breadth First had a regular performance, but it was not as good as Breadth First with

time constraints and PageRank.

Table 1: Crawling Results

Figure 4: Total number of relevant pages visited

Figure 5: Percentage of relevant pages among pages visited

CONCLUSION

Internet is one of the easiest sources available in present days for searching and accessing any sort

of data from the entire world. The structure of the World Wide Web is a graphical structure, and

the links given in a page can be used to open other web pages. In this dissertation, Graphical

structure is used to process certain traversing algorithms used in the search engines by the

Crawlers. Each webpage can be considered as node and hyperlink as edge, so the search

 No of

Pages

Visited

No of

Relevant

Pages

Visited

Precision

Breadth

First

100.000 28.797 28,797%

Best First 100.000 33.930 33,930%

PageRank 100.000 35.090 35,090%

Breadth

First with

Time

Constraints

100.000 37.691 37,691%

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

78

International Journal of Research in Science And Technology

operation could be abstracted as a process of traversing directed graph. By following the linked

structure of the Web, crawler can traverse a number of new web pages starting from a Starting

webpage. Web crawlers are the programs or software that uses the graphical structure of the Web

to move from page to page. In this dissertation, firstly discussed about Internet, Search Engines,

Crawlers and then Crawling Algorithms in brief.

There are number of crawling strategies used by various search engines. The basic crawling

approach uses simple Breadth First method of graph traversing. But there are certain disadvantages

of BFS since it is a blind traversing approach. To make traversing more relevant and fast, some

heuristic approaches like best first, are followed. The results of all the crawling approaches are

giving different results.

After analysing the results and findings of the crawler it might be concluded that, the

crawler developed could be really helpful and useful to study the performance of different

crawling algorithms in terms of precision, without taking into consideration the time. But it

is not a difficult task to compute the time that a crawling algorithm takes in this simulation

framework. According to the results, it can be observed that the number of relevant pages

retrieved by each one of the crawling algorithm doesn’t depend on the set of starting URLs

rather than used crawling algorithm. But this affirmation may be confirmed running more

experiments with different values for each one of the input parameters. The weakness of the

crawler lies in the time to compute the algorithms. New algorithms need to be adjusted to the

shared data structures and parameters. In addition, each of the proposed scheduling algorithms has

its own special features. For this reason, it is difficult to implement each of them in the most

efficient way.

The future work will be directed in two directions. On one hand, and the most obvious, the

implementation of more scheduling techniques in order to find one with a really good

performance. Probably, this algorithm will assign a specific score to each individual

outgoing link; instead of inherit it from the page itself. When this algorithm will be found,

it will have to be tested in a real crawler in order to verify its performance. On the other

hand, the attempt to find a measure that given the precision, the number of fetched pages

and the time for scheduling specifies which is the best combination of these three

parameters, in order to know which is the best performance.

REFERENCES

1. http://en.wikipedia.org/wiki/Web_crawler#Examples_of_Web_crawlers

2. http://www.chato.cl/papers/castillo04_scheduling_algorithms_web_crawling.pdf

http://en.wikipedia.org/wiki/Web_crawler#Examples_of_Web_crawlers
http://www.chato.cl/papers/castillo04_scheduling_algorithms_web_crawling.pdf

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2011, Vol. No. 1, Issue No. III, Jul-Sep e-ISSN: 2249-0604, p-ISSN: 2454-180X

79

International Journal of Research in Science And Technology

3. http://ieeexplore.ieee.org/iel5/2/34424/01642621.pdf

4. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.9569&rep=rep1&type=pdf.

5. http://dollar.biz.uiowa.edu/~pant/Papers/crawling.pdf

6. Marc Najork, Allan Heydon SRC Research Report 173, “High-Performance Web

Crawling”, published by COMPAQ systems research center on September 26, 2001.

7. Sergey Brin and Lawrence Page, ”Theanatomy of a large-scale hyper textual Web search

engine”, In Proceedings of the Seventh International World Wide Web Conference, pages

107–117, April 1998.

8. [Ard¨o A]. (2005). “Combine Web crawler,” Software package for general and focused

Web-crawling. http://combine.it.lth.se/.

http://ieeexplore.ieee.org/iel5/2/34424/01642621.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.9569&rep=rep1&type=pdf
http://dollar.biz.uiowa.edu/~pant/Papers/crawling.pdf
http://combine.it.lth.se/

